An End-to-End Architecture for Keyword Spotting and Voice Activity Detection
نویسندگان
چکیده
We propose a single neural network architecture for two tasks: on-line keyword spotting and voice activity detection. We develop novel inference algorithms for an end-to-end Recurrent Neural Network trained with the Connectionist Temporal Classification loss function which allow our model to achieve high accuracy on both keyword spotting and voice activity detection without retraining. In contrast to prior voice activity detection models, our architecture does not require aligned training data and uses the same parameters as the keyword spotting model. This allows us to deploy a high quality voice activity detector with no additional memory or maintenance requirements.
منابع مشابه
Attention-based End-to-End Models for Small-Footprint Keyword Spotting
In this paper, we propose an attention-based end-to-end neural approach for small-footprint keyword spotting (KWS), which aims to simplify the pipelines of building a production-quality KWS system. Our model consists of an encoder and an attention mechanism. The encoder transforms the input signal into a high level representation using RNNs. Then the attention mechanism weights the encoder feat...
متن کاملDocument Image Retrieval Based on Keyword Spotting Using Relevance Feedback
Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...
متن کاملKeyword spotting in multi-player voice driven games for children
Word spotting, or keyword identification, is a highly challenging task when there are multiple speakers speaking simultaneously. In the case of a game being controlled by children solely through voice, the task becomes extremely difficult. Children, unlike adults, typically do not await their turn to speak in an orderly fashion. They interrupt and shout at arbitrary times, speak or say things t...
متن کاملDiscriminative word-spotting using ordered spectro-temporal patch features
We present a novel architecture for word-spotting which is trained from a small number of examples to classify an utterance as containing a target keyword or not. The word-spotting architecture relies on a novel feature set consisting of a set of ordered spectro-temporal patches which are extracted from the exemplar mel-spectra of target keywords. A local pooling operation across frequency and ...
متن کاملKeyword Spotting Using Normalization of Posterior Probability Confidence Measures
Keyword Spotting Using Normalization of Posterior Probability Confidence Measures by Rachna Vijay Vargiya Thesis Advisor: Marius C. Silaghi, Ph.D. Keyword spotting techniques deal with recognition of predefined vocabulary keywords from a voice stream. This research uses HMM based keyword spotting algorithms for this purpose. The three most important componenets of a keyword detection system are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1611.09405 شماره
صفحات -
تاریخ انتشار 2016